Vad är datorseende?

Computer vision, även känt som vision AI eller AI vision, är en specialiserad tillämpning av artificiell intelligens (AI) som syftar till att analysera och förstå visuella data. Det kan t.ex. vara videor, foton, satellitbilder eller skanningar. I likhet med människans synförmåga ger datorseende maskiner möjlighet att fånga upp visuell information, tolka den och reagera därefter.

Vad är datorseende?

Computer vision, även känt som vision AI eller AI vision, är en specialiserad tillämpning av artificiell intelligens (AI) som syftar till att analysera och förstå visuella data. Det kan t.ex. vara videor, foton, satellitbilder eller skanningar. I likhet med människans synförmåga ger datorseende maskiner möjlighet att fånga upp visuell information, tolka den och reagera därefter.

Datorseende kortfattat förklarat

Computer vision (även: vision AI, AI vision) är inte bara bildigenkänning. Det är ett område inom AI som gör det möjligt för datorer och system att extrahera meningsfull information från visuella data. Denna teknik gör det möjligt för system att vidta åtgärder eller ge rekommendationer. Datorseende går alltså längre än enkel bildbehandling genom att ta hänsyn till kontextuell information och reagera intelligent på förändringar i miljön. Med hjälp av algoritmer och moderna inlärningsmetoder kan mönster och egenskaper identifieras, objekt identifieras och rörelser spåras.

Datorseende i praktiken

Datorseende kan användas inom många områden, bland annat sjukvård, autonoma fordon och säkerhetsövervakning. Inom t.ex. robotik gör datorseende det möjligt för robotar att visuellt uppfatta sin omgivning, identifiera objekt och fatta beslut baserat på detta. Detta gör det möjligt för robotar att utföra autonoma uppgifter, t.ex.

  • Navigera i okända miljöer
  • gripande föremål
  • Samarbete med människor i dynamiska arbetsmiljöer (s.k. cobots)

Hur fungerar datorseende?

Syftet med datorseende är att med hjälp av avancerade bearbetningsmodeller skapa digitala system som kan bearbeta och analysera visuella data på samma sätt som människor - eller till och med snabbare och effektivare.

Processen inleds med att bilder och videor tas och förbehandlas med hjälp av algoritmer. Data analyseras sedan med hjälp av tränade modeller som kan känna igen specifika funktioner och mönster. Dessa modeller baseras på stora datamängder, vilket gör att de kan bli alltmer exakta genom träning.

En avancerad teknik utnyttjar neurala nätverk med flera lager. Dessa nätverk känner till en början igen enkla funktioner som kanter och senare mer komplexa mönster. Detta gör att systemet gradvis kan förstå objekt och scener allt bättre.

Slutligen används den extraherade informationen för att utlösa åtgärder eller ge rekommendationer. Tack vare framsteg inom hårdvara och datorkraft kan datorseende redan fungera i nära realtid och hantera komplexa uppgifter. Moln- och edge computing har ytterligare ökat prestandan för datorseende.

Möjliga tillämpningar av datorseende:

  • Industrirobotar: Robotar använder datorseende för att känna igen sin omgivning. De navigerar och utför uppgifter självständigt.
  • Industriell automation: Exakta inspektioner och kvalitetskontroller av produktionslinjer för att upptäcka produktionsfel i ett tidigt skede.
  • Säkerhetsteknik: Övervakningssystem känner igen och reagerar på misstänkta aktiviteter i realtid.
  • Hälso- och sjukvård: Analys av medicinska bilder för snabbare och mer exakta diagnoser.
  • Intelligenta transportsystem: Övervakning och styrning av trafikflödet för att förbättra trafiksäkerheten och effektiviteten.

Fördelarna med datorseende i en överblick:

  • Precision och effektivitet: snabb analys av stora volymer visuella data, vilket leder till effektivare processer genom färre manuella ingrepp.
  • Automatisering: Visuella inspektionsuppgifter, t.ex. inom kvalitetsstyrning, kan automatiseras.‍
  • Beslut i realtid: omedelbar bearbetning och analys av visuella data, vilket gör det möjligt att reagera snabbt på förändringar.